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We report the first investigation of femtosecond gain dynamics in InGaAs/AIGaAs
strained-layer single-quantum-well diode lasers using a multiple-wavelength pump probe
technique. Studies demonstrate that carrier temperature changes from free-carrier absorption
and stimulated transitions strongly govern transient gain dynamics. The energy of the pump
wavelength relative to the transparency point determines which processes dominate the transient
response. Stimulated carrier cooling is observed for the first time in these materials.

The study of femtosecond gain dynamics in laser di- tunable, pump and probe pulses. In strained-layer materi-
odes plays an important role in understanding laser line- als, the hole bands drc nondegenerate at the F point. The
width, modulation bandwidth, amplification, and short- pump and probe polarizations (TE) and photon energies
pulse generation.--6 Pump probe measurements of were chosen so that only transitions from the heavy-hole
nonlinear gain dynamics have been performed in bulk band were allowed. Different frequency pump and probe
GaAs, 7-9 bulk InGaAsP,10 InGaAsP multiple-quantum- photon energies simplifies the interpretation of the pump
well (MQW),"- 2 and InGaAs/InGaAsP strained-layer probe measurements by reducing the sensitivity to state
MQW amplifiers.' 3 Dynamic carrier temperature changes filling at the pump wavelength. The probe wavelength may
influence gain dynamics on the I ps time scale. These tem- also be kept in the gain region while pumping at different
perature changes can be produced by free-carrier absorp- wavelengths. This permits direct measurement of the
tion, stimulated transitions, and two-photon absorption. change in gain produced by the pump in the gain, trans-
Previous studies have shown that free-carrier absorption parency, and loss regions. Under thes- conditions, a de-
plays a dominant role in carrier heating. crease (increase) in carrier temperature will result in an

Recently, we have shown that both free-carrier absorp- increase (d'!crease) in probe transmission.7 13

tion and stimulated transitions contribute to carrier heat- For our measurements, the probe wavelength was 942
ing in InGaAs/AIGaAs strained-layer single-quantum- nm ( 11 meV above the band edge) and the pump was 920
well (SQW) diode lasers.14 In this letter, we present the nm (43 eV above the band edge) below the energy for
first investigation of gain dynamics in an InGaAs/AIGaAs transitions from the light-hole band. The pulses were 120 fs
strained-layer SQW diode laser. A novel multiple- with 10 nm spectral bandwidths, corresponding to a time-
wavelength pump probe technique is applied which per- bandwidth product of 0.44, assuming Gaussian pulses.
mits more comprehensive measurements than previously Measurements were performed at bias currents from 3.5 to
possible. Gain dynamics are studied for pump wavelengths 6 mA, below the laser threshold. Changes in bias change
in the gain, transparency, and loss regimes. In contrast to the gain profile so that gain, transparency, or absorption
previous studies, our investigations show that free-carrier was produced at the pump wavelength. The probe wave-
heating plays a much weaker role in determining carrier length was in the gain region for all cases. The carrier
temperature dynamics than stimulated transition effects, density in the SQW was _ I X 1012/cm 2. The pulse energy
Carrier cooling at pump wavelengths in the absorption re- inside the diode was small, - 100 and 5 f0 for the pump
gime is observed for the first time in these devices, and the probe, respectively, so that gain changes were per-

The device used for these studies is an InGaAs/ turbative.
AIGaAs graded-index separate-confinement heterostruc- Figure 1 shows the gain dynamics for different bias
ture (GRINSCH) SQW ridge-waveguide diode laser15  currents. The instantaneous decrease in probe transmission
which is 300 jm in length with uncoated facets. The SQW near zero time delay in all of the traces is the result of
has a 10-nm-thick In 0 13Ga0 87As active layer and 2.5-nm- two-photon absorption. The steplike transmission changes
thick GaAs bounding layers. The band gap is -950 nm at long delays are produced by net changes in carrier den-
and the diode threshold current was 15 mA. Studies were sity and depend r- the position of the pump in the gain
performed using a multiple-wavelength pump probe tech- spectrum. The pump is in the gain regime for traces (a)
nique.14 A modelocked Ti:A120 3 laser was coupled into an and (b), at the transparency point for (c), and in the
optical fiber for spectral broadening and spectral filtering absorption regime for (d) and (e). Peak-to-peak transmis-
was used to select temporally synchronized, independently sion changes are -I%. In order to measure relaxation
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FIG. 2. Comparison of the data of trace (c) of Fig. I for pumping at the
transparency point (solid line) with the data taken with the pump at 972

, _ _, _ ___,_, _, nm (below the bandgap) and the probe at 942 nm (dashed line). Ten
0 1 2 3 4 5 times amplification of both traces is provided.

Delay (ps)

carriers at energies less than the average energy of carrier
FIG. I. Gain dynamics in InGaAs/AlGaAs strained-layer SQW diode population. The average energy of carriers was calculated
lasers. Traces (a), (b), (c), (d), and (e) represent the experimental data using a simple model where only electrons and heavy holes
for 6, 5, 4.85, 4.5, and 3.5 mA. respectively. The dashed lines superim-
posed on (a), (d), and (e) are the fitted curves generated for those data. were considered. The calculations were calibrated by using

the experimentally observed transparency photon energy.
The average energy was 65 and 75 meV above the band-

time constants from the data, the curves were fit by con- edge for 3.5 and 6 mA bias currents, respectively. This is
volving exponential decays with the pulse cross- commensurate with our hypothesis that pumping at 920
correlation'°-1 3 [see dashed lines on traces (a), (d), and nm (43 meV abo, e the band edge) generates cold carriers
(e) in Fig. 1]. when the bias curreii is 3.5 mA and removes cold carriers

At 6 mA bias current [Fig. I (a)], the pump is in the when the bias current is 6 mA.
gain region and stimulated transitions dominate 2.arrier The dashed line superimposed on trace (e) of Fig. I
thermalization. The pump pulse removes cold carriers shows the convolution fit to the experimental data. A de-
(carriers below the average energy) and thus heats the cay time of -0.8 ps is obtained for carrier cooling, which
carrier distribution. The relaxation time of the carrier tern- is very close to the recovery time observed for stimulated-
perature is -0.8 ps in agreement with our previous ,nea- transition-induced carrier heating. In orde- to fit the sharp
surements. 14 At 4.85 mA of bias current [Fig. I (c)], the increase and the peak of the transmission of trace (e) in
pump is at the transparency point and there are no net Fig. I, an exponential decay of < 100 fs (positive), has to
interband stimulated transitions. In this case free-carrier be introduced. This fast component has also been observed
absorption dominates carrier heating. To confirm this hy- in bulk AIGaAs9 and InGaAsP MQW systems"1" 2 and
pothesis, a complementary measurement was performed may be attributed to spectral hole burning effects.
with the probe at 942 nm and the pump wavelength below Traces (b) and (d) of Fig. I correspond to pumping in
the bandedge at 972 nm where only free-carrier absorption the gain and absorption regimes close to the transparency
contributed to carrier heating. Figure 2 shows the mea- point. For these conditions, both stimulated transitions
sured gain dynamics and is commensurate with Fig. 1 (c). and free-carrier absorption produced carrier temperature
The recovery time for free carrier heating is .- 1.5 ps in changes. Figure 3 shows enlargements of the data and a
agreement with previous measurements.14  curve fit for 4.5 mA bias current [trace (d) of Fig. 1]. The

At low bias currents of 3.5 mA [Fig. I (e)1, the pump observed dynamics result from the combination of stimu-
wavelength is in the absorption regime. After the rapid lated carrier cooling and free-carrier heating. These pro-
initial decrease in transmission from two-photon absorp- cesses have different time constants and different sign con-
tion, the transmission increases rapidly, then relaxes. We tributions. The dashed line in Fig. 3 is a fit with time
believe that this behavior is the result of carrier cooling, constants of < 100 I's and 0.8 ps (both positive contribu-
The observation of carrier cooling is significant because tions), obtained from trace (e) of Fig. 1, combined with a
previous studies have shown that carrier heating effects are time constant of 1.5 ps (negative contribution), obtained
dominant in other systems such as bulk GaAs, bulk from trace (c) of Fig. 1. Excellent agreement is obtained
InGaAsP, and MQW InGaAsP materials.7-13 The only with experimental data.
study to observe carrier cooling was the investigation of Our experimental observations are summarized sche-
Mark et al. 16 in InGaAsP MQW laser amplifiers. Carrier matically in Fig. 4. Because of the low carrier density, the
cooling produces a transient increase in gain (or absorp- average carrier energy in our experiments is higher than
tion saturation), rather than a transient decrease in gain the transparency point photon energy. Two different ef-
(or gain saturation) that is associated with carrier heating. fects, free-carrier absorption and interband stimulated

Carrier cooling is produced by the generation of cold transitions, contribute to carrier temperature changes.
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range of pump wavelengths. 7 13 This behavior may be the

014- result of several factors, including the higher gain in a
strained system and the large separation between the trans-

, 7.-•irei,,y point and the average energy for the low carrier
0 012. densities used in our experiments. It is also possible that

oar experimental technique permits the observation of car-
0.-< i rier cooling because measurements can be performed with

pump photon energies which are well into the loss regime,
while still probing in the gain regime.

0.06 I In conclusion, we report the first measurements of gain

Delay (ps) dynamics in InGaAs/AlGaAs strained-layer SQW diode
lasers using a multiple-wavelength pump probe technique.
Carrier temperature changes mediated by both free-carrier

FIG. 3. Amplification of trace (d) of Fig. I (solid line) and its fit absorption and stimulated transitionsi were observed. Car-
(dashed line). rier cooling effects were observed for the first time in GaAs

based material. An increased understanding of the physical
Stimulated transitions depend strongly on the pump pho- mechanisms of gain dynamics from carrier temperature
ton energy, while free-carrier absorption is relatively con- changes is important for the design of new devices. In
stant. For pump wavelengths near the transparency point, particular, the reduction of carrier heating has important
net stimulated carrier population changes can be strong, implications for reducing parasitic gain saturation effects in
however, carrier temperature changes will be small. Under short-pulse modelocked laser diodes and amplifiers.
boWi of !hcsc conditions, gain dynamics will be governed The authors would like to thank F Vallie. E. P. tInert
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